The Game of Life
I have just finished reading a wonderful book by Maria Konnikova, The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win (Penguin Press, 2020). Konnikova is a PhD psychologist who researches decision making and risk. She decides to study this in the domain of poker. She begins as a total novice and goes on to win major amounts professionally.
She argues, at least early on, that life is like poker. You estimate, if only implicitly, the probability that your hand is better than opponents and place your bets accordingly. You eventually win or lose. This argument caused me to ask, “Is life really like poker?” It seems to me that most things are not win or lose propositions. Everything is not a sporting event.
To explore this question, let’s first clarify the notion of probability. The most common interpretation is in terms of frequentist probability — the probability of a random event denotes the relative frequency of occurrence of an experiment’s outcome, for repeated experiments. This makes sense for the probabilities of cards being dealt by the dealer, less so for probabilities that opponents hold particular cards.
You typically know much more than just the cards showing on the table. You know what each opponent has bid at each step of the round. If you have read her book, you have watched their hands and made various inferences. Now, you are in the realm of subjectivist probability — the degree of belief in the likelihood of an event. Bayesian probability includes expert knowledge as well as experimental data to estimate prior probabilities and, via Bayes rule, updates of estimates based on new evidence to yield “a posterior” probabilities.
Where do frequentist probabilities apply? They apply to cards, dice, and many games because these entities are inherently structured by design. Thus, one can calculate the probabilities, assuming fair dealers and other game mechanisms. We often assume, implicitly at least, that frequentist probabilities apply to non-designed phenomena, e.g., weather, traffic, sporting events. However, this is just a heuristic.
So, how should we approach life beyond poker? I am in the business of academic research and often pursuing research funding. Research proposals, if competitive, can be win or lose. On the other hand, proposals negotiated with sponsors or clients can have a range of outcomes and change over time. Intellectual merit and broader impacts are important, but can you deliver compelling results and impacts when promised?
Relationships with colleagues, friends, sponsors, and clients are, hopefully, not limited to winning or losing. My investments in such relationships are not all or nothing. They are much more nuanced. These relationships support identifying opportunities, developing ideas, securing resources, executing the research, and reporting the results. Winning or losing is only one element of this and often not a major element.
Earning grades in classes and eventually degrees can seem like win/lose. Gaining promotions and tenure can seem like win/lose. There is not just one winner, but it can feel that way. Similarly, election as a society fellow or Academy member is not so crisply win/lose, as more that one person can win. Yet, people feel they are likely to win or lose.
Degrees, promotions, and tenure are based on assessments of potential to perform in the future. Do your credentials portend continued excellence? In contrast, election as fellows or Academy members is based on a track record of past performance. Nevertheless, it is all about performance relative to somewhat standardized metrics. Did you garner more poker winnings than your competitors?
Is this really how everything works? Much of my professional strategy has been to try to maximize probabilities in my favor or, better yet, remove uncertainty completely, for better or worse. If the probability becomes zero, I obviously move on to other opportunities. This, I hope, seems reasonable. Investing enormous energies in losing propositions seems like a terrible investment for everyone.